Object Attack
Educator’s Guide

Overview
CS Hands-On is a 501(c)(3) nonprofit teaching computational thinking skills through technology-free lessons and activities. This curriculum is built to teach fundamental computer science concepts in an engaging, hands-on way. In this mission, students use public and private properties to play an action-packed game.

Prerequisite Knowledge
Student should have completed the Conditional Schedule and Object Oriented Fun activity, which introduces the concept of variables and object-oriented programming.

Lesson Details
At Decomposphere, students will learn to break problems down into smaller parts with Dot. Students will learn the importance of encapsulation with public and private properties to play an action-packed Grid Attack game.

This lesson was developed for students ages 8 to 13, and can be modified for students of all skills and ages. This lesson takes around 30 minutes.

Learning Objectives

Key Question
How can we assign public and private properties to objects?

Key Terms
Encapsulation: The idea of keeping the variables and functions of an object private

Curriculum Standards
Students should be able to...
- Explain why encapsulation is used (Decomposition)
- Read, write, and interpret public and private properties (Literacy)
- Use functions and variables to play a Grid Attack game (Creative Arts)

View standards addressed here
Lesson Plan

Materials

- Object Attack worksheet (per student)

Setup

- Hand out an Object Attack worksheet to each student
- Set up your classroom to form students in groups of 2

Outstanding Objects

Dot is so excited to see you back at Decomposphere! Today, you’ll learn more about objects and how they can keep their properties out of sight. Let’s jump right in!

Who let the dogs out?

In object-oriented programming, we can choose to keep the variables and functions of an object private. When these features are private, other objects cannot directly control them. Each object can have a combination of both private and public features.

What’s the difference between private and public?

While private properties (variables and functions) cannot be directly controlled by other objects, public properties can. Let’s take a look at an example with Dot’s pet dog, Rocky!

<table>
<thead>
<tr>
<th>Variables (Who Rocky is)</th>
<th>Functions (What Rocky does)</th>
</tr>
</thead>
<tbody>
<tr>
<td>private breed</td>
<td>private bark</td>
</tr>
<tr>
<td>private age</td>
<td>private sleep</td>
</tr>
<tr>
<td>public owner</td>
<td>public feed</td>
</tr>
<tr>
<td></td>
<td>public play</td>
</tr>
</tbody>
</table>

Why private?

- Rocky’s breed and age
- Dot can’t control
- Rocky’s breed and age.

Why public?

- Rocky’s owner, Dot, can control who owns Rocky
- Dot can control:
- when to feed or play with Rocky
- naturally control when Rocky barks or sleeps
- can control:
- when to feed or play with Rocky

Who let the dogs out?

Reflex

If we modeled humans as objects, what would some of our private and public properties be?

Ex. Private: Age, name, birthday
Public: Hair color, pets
Why do we use private properties?
In computer science, we use private properties to protect features like breed, mood, hunger from being directly controlled by other objects.

Private variables can only be changed through public functions.

For example, let's take a look at our public function, public feed:

```
Public feed
Add 1 to hunger
Add 1 to mood
```

+1
Hunger-meter +1
Mood-meter +1

Since our feed function is public (Dot can decide when to feed Rocky), Dot can indirectly control Rocky's private hunger and mood variables.

However, some private variables can never be changed. For example, we cannot change Rocky's breed as a Labrador.

Educator Note
Through public functions, we can change private variables like hunger and mood. Encourage your students to brainstorm other public functions to change the private variable mood of Rocky the Labrador. (Play, walk, pet)
Grid Attack!
In this action-packed game, you will be creating your own player object with its private/public variables and functions to attack an opponent!

Materials
- 2 tokens for you and your friend (This will represent where you are on the board!)
- 1 die

Define your player object’s variables by creating a name, age, and health value. Each player starts the game with a health level of 5 (out of 5). Next to each variable and function, circle whether it is private or public! (Think: Can these properties be directly changed or used by other objects?)

Take turns rolling the die with your friend. Use the walk function to move your token the number of steps you rolled in any direction (up, down, left, right). Keep track of your activity in your activity list.

(Ex. if you rolled a 6, you can choose to walk 3 steps left and 3 steps up).

How to Play
- If you are on , use the eat function to add 1 point to your health.
- If you are at the same location as your opponent, use the attack function to subtract 2 points from your opponent’s health.
- Winning the game: You win the game when your opponent’s health status reaches 0.

Extension
If students finish early, have them change the Health variable to a higher/lower number to play again. Print copies of the activity list and game board as needed.
My Player Object

<table>
<thead>
<tr>
<th>Variables</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private/Public Name</td>
<td>Private/Public Walk (circle one)</td>
</tr>
<tr>
<td>Private/Public Age</td>
<td>Move the number of steps rolled</td>
</tr>
<tr>
<td>Private/Public Health</td>
<td>Subtract 2 points from opponent's health</td>
</tr>
<tr>
<td></td>
<td>Private/Public Attack (circle one)</td>
</tr>
<tr>
<td></td>
<td>Add 1 point to your own health</td>
</tr>
</tbody>
</table>

My Activity List

<table>
<thead>
<tr>
<th>Function</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. Walk left 3 steps</td>
<td>5</td>
</tr>
</tbody>
</table>

START
Wrap up & reflect

Group students into pairs and have them discuss the following reflection questions. Afterwards, have students share their ideas as a class.

- Think of an insect. How would you model it as an object with private/public variables and functions?

 Ladybug
 - Private variables: Number of legs = 6, Number of wings = 2, Color = Red
 - Public variables: Location = Park
 - Private functions: Fly, Crawl

- Why is it important to establish different properties as either public or private? When a property is public, we know that it can be changed directly by other objects. When the property is private, we know that it can either be changed through a public function or simply cannot be changed at all.